
Model-View-Controller	
Architecture

CS	5010	Program	Design	Paradigms
“Bootcamp”
Lesson	11.3

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

In	general,	our	simulations	have	3	
parts

• A	Model	(something	being	simulated)
• A	View		(a	way	to	display	some	of	the	
information	in	model)

• A	Controller	(a	way	to	provide	inputs	to	the	
model,	often	based	on	the	view)

2

Helpful	to	separate	these

• Each	part	may	be	complicated		(separation	of	
concerns)

• Model	shouldn't	care	about	how	it	is	displayed
• May	have	several	viewers	and	controllers
• Model	and	viewer	may	be	running	at	different	
rates

• Clarify	interface	between	controller	and	
model.

3

Example:	multiple	viewers

• Imagine:	some	temperature	is	being	
monitored/modelled/controlled

• Multiple	viewers:
– display	in	Celsius			
– display	in	Fahrenheit
– display	on	a	slider

• May	want	to	change/add	viewers	dynamically

4

Larger	Example:	Nuclear	Reactor

• The	reactor	has	many	valves,	sensors,	etc.
• Unlike	our	screensavers,	balls,	etc.	there’s	no	
single	object	to	display.

• Best	we	can	do	is	to	have	a	viewer	for	each	
sensor	and	a	controller	for	each	valve.

• People	add	new	sensors	and	new	valves	all	
the	time.

• How	can	we	model	this?

5

Smaller	example:	Flight	simulator

• Model:	at	each	instant,	calculates	new	state	of		
the	airplane	(airspeed,	altitude,	attitude,	etc.,	
based	on	current	airspeed,	etc.,	and	position	
of	control	surfaces

• View	#1:	digital	airspeed	indicator
• View	#2:	analog	(dial)	airspeed	indicator
• Controller	#1:	pilot	controls	(arrow	keys)
• Controller	#2:	copilot	controls	(mouse)

6

Our	current	architecture	has	these	all	
mixed	together

• Every	Widget<%>	or	SWidget<%>	is	
responsible	for	all	3	aspects:
– on-tick		(Model)
– add-to-scene	(View)
– on-mouse,	on-key		(Controller).

• What	can	we	do	about	this?

7

Instead:	MVC	architecture

• Divide	a	simulation	into:
– Model:	the	part	that	actually	simulates	the	system	
in	question

– View:	the	part	that	displays	the	state	of	the	
system

– Controller:	the	part	that	takes	user	input	and	
transmits	it	to	the	model

8

Working	Example

• Imagine	we	have	a	particle	(a	point	mass),	
bouncing	in	a	one-dimensional	space	of	some	
fixed	size.

• It’s	a	point	mass,	so	we	can’t	see	it,	but	we	have	
sensors	that	measure	its	position	and	velocity.

• We	also	have	controllers	that	control	its	position	
and	velocity	(separately).

• “p”	adds	a	position	controller,	“v”	adds	a	velocity	
controller.

9

Demonstration

10

Views	and	Controllers	are	often	tightly	
linked

• In	many	examples,	Views	and	Controllers	are	
tightly	linked
– mouse	or	keyboard	input	is	interpreted	relative	to	
screen	position	&	the	viewer	that's	running	at	that	
screen	position.	

• So	we'll	treat	them	together	and	call	them	
controllers.

• Note:	with	other	input	devices,	controllers	and	
viewers	may	be	entirely	separate:
– E.g.	a	flight	simulator	with	a	joystick

11

Model	and	Controllers	are	weakly	
linked

• Each	controller	is	linked	to	a	single	model
• A	model	may	be	linked	to	many	controllers
• Set	of	controllers	may	change	dynamically.

12

Solution:	Use	publish-subscribe

• Model	publishes	changes	in	its	state	to	the	
subscribed	controllers.

• Each	controller	responds	to	its	mouse	and	
keyboard	inputs	by	sending	commands	to	the	
model.

• Model	changes	its	state	in	response	to	
commands	it	receives

13

Model

Controller Controller ControllerController

One	model,	many	controllers

14

model	publishes	changes

controllers	listen	for	changes

MVC	Feedback	loop

15

Model

Controller

controller	receives	changes

controller	receives
input	 from	mouse,	
keyboard,	etc

model	publishes	changes

controller	sends	
commands	to	model

model	 responds	 to	
commands,	maybe	
changing	 its	state

This	is	a	3-tier	architecture

16

World ModelController

Controller

Controller

World	 sends	 external	
events	to	the	

controllers	using	
Widget<%>	interface

Controllers	 control	the	
model	using	Model<%>	

interface

Model	reports	to	the	
controllers	using	

Controller<%>	interface

Interfaces.rkt
#lang racket
;; new version, based on WidgetWorks

(provide World<%> SWidget<%> Controller<%> Model<%>)

(define World<%>
(interface ()

; SWidget<%> -> Void
add-widget ; we have only Stateful Widgets

; PosReal -> Void
run
))

(define SWidget<%>
(interface ()
add-to-scene ; Scene -> Scene
after-tick ; -> Void
after-button-up ; Nat Nat -> Void
after-button-down ; Nat Nat -> Void
after-drag ; Nat Nat -> Void
after-key-event ; KeyEvent -> Void
))

(define Controller<%>
(interface (SWidget<%>)

;; Signal -> Void
;; receive a signal from the model and adjust
;; controller accordingly
receive-signal

))

(define Model<%>
(interface ()

;; -> Void
after-tick

;; Controller<%> -> Void
;; Registers the given controller to receive signal
register

;; Command -> Void
;; Executes the given command
execute-command

))

;; registration protocol:
;; model sends the controller an initialization signal
as soon as it registers.

17

Data	Definitions	for	Communicating	
with	Model

(define-struct set-position-command (pos) #:transparent)
(define-struct incr-velocity-command (dv) #:transparent)

;; A Command is one of
;; -- (make-set-position Real)
;; INTERP: set the position of the particle to pos
;; -- (make-incr-velocity Real)
;; INTERP: increment the velocity of the particle by dv

(define-struct position-signal (pos) #:transparent)
(define-struct velocity-signal (v) #:transparent)

;; A Signal is one of
;; -- (make-position-signal Real)
;; -- (make-velocity-signal Real)
;; INTERP: report the current position or velocity of the
;; particle

18

World.rkt (1)
;; A World is a
;; (make-world model canvas-width canvas-height)

(define (make-world m w h)
(new World%
[model m][canvas-width w][canvas-height h]))

(define World%
(class* object% (World<%>)

(init-field canvas-width) ; Nat
(init-field canvas-height) ; Nat

;; the model
(init-field model) ; Model<%>
(init-field [widgets empty]) ; ListOf(Swidget<%>)

(super-new)

;; (Widget -> Void) -> Void
(define (for-each-widget fn)
(for-each fn widgets))

;; (Widget Y -> Y) Y ListOfWidget -> Y
(define (foldr-widgets fn base)
(foldr fn base widgets))

(define empty-canvas
(empty-scene canvas-width canvas-height))

(define/public (add-widget w)
(set! widgets (cons w widgets)))

19

The	world	contains	a	list	of	
SWidgets and	a	model.		The	
model	 receives	only	after-tick	
messages;	the	others	receive	

the	usual	Swidget<%>	
messages.

We	use	for-each-widget and	foldr-
widgets to	distribute	messages	to	

the	widgets.

World.rkt (2)
(define/public (run rate)
(big-bang this
(on-tick
(lambda (w) (begin (after-tick) w))
rate)

(on-draw
(lambda (w) (to-scene)))

(on-key
(lambda (w kev)
(begin
(after-key-event kev)
w)))

(on-mouse
(lambda (w mx my mev)
(begin
(after-mouse-event mx my mev)
w)))))

(define (after-tick)
(begin
(send model after-tick)
(for-each-widget
(lambda (c) (send c after-tick)))))

(define (after-key-event kev)
(for-each-widget
(lambda (c) (send c after-key-event kev))))

20

Calling	the	run method	 invokes	big-
bang on	this	object.		The	big-bang
handlers	are	all	local	functions	 in	
the	class,	not	accessible	from	
outside.

after-tick	is	sent	to	the	model	
and	to	each	widget

after-key-event	is	sent	just	to	
each	widget

World.rkt (3)
(define (to-scene)
(foldr-widgets
(lambda (widget scene)
(send widget add-to-scene scene))

empty-canvas))

;; decode the mouse event and send
;; button-down/drag/button-up
;; events to each widget
(define (after-mouse-event mx my mev)
(for-each-widget
(mouse-event->message mx my mev)))

;; Nat Nat MouseEvent -> (Widget -> Void)
(define (mouse-event->message mx my mev)
(cond
[(mouse=? mev "button-down")
(lambda (obj)
(send obj after-button-down mx my))]

[(mouse=? mev "drag")
(lambda (obj)
(send obj after-drag mx my))]

[(mouse=? mev "button-up")
(lambda (obj)
(send obj after-button-up mx my))]

[else (lambda (obj) 1111)]))

))

21

to-scene calls	the	add-to-
scenemethod	on	each	
widget,	and	folds	 the	

results

after-mouse-eventdecodes	the	
mouse	event	and	sends	the	
appropriate	method	call	to	each	
widget.		This	version	of	the	code	
breaks	up	the	task	differently	than	
WidgetWorks.rkt did.		Do	you	
understand	how	each	version	
works?

Puzzle:	why	must	the	else line	be	of	the	form	
(lambda	(obj))	?

Model.rkt (1)
(define Model%
(class* object% (Model<%>)

;; boundaries of the field
(field [lo 0])
(field [hi 200])

;; position and velocity of the object
(init-field [x (/ (+ lo hi) 2)])
(init-field [v 0])

; ListOfController<%>
(init-field [controllers empty])

(super-new)

;; Controller -> Void
;; register the new controller
;; and send it some data for initialization
(define/public (register c)
(begin
(set! controllers (cons c controllers))
(send c receive-signal
(make-position-signal x))

(send c receive-signal
(make-velocity-signal v))))

;; -> Void
;; moves the object by v.
;; if the resulting x is >= 200 or <= 0
;; reports x at ever tick
;; reports velocity only when it changes
(define/public (after-tick)
(set! x (within-limits lo (+ x v) hi))
(publish-position)
(if (or (= x hi) (= x lo))
(begin
(set! v (- v))
(publish-velocity))

‘nonsense-value-13))

(define (within-limits lo val hi)
(max lo (min val hi)))

22

As	promised	by	the	registration	protocol,	 the	
model	sends	 each	new	controller	its	data.

Whenever	the	model	changes	its	position	
or	velocity,	 it	sends	the	new	data	to	the	

controllers.

Model.rkt (2)
;; Command -> Void
;; decodes the command, executes it, and
;; sends updates to the controllers.
(define/public (execute-command cmd)
(cond

[(set-position-command? cmd)
(begin

(set! x
(set-position-command-pos cmd))
(publish-position))]

[(incr-velocity-command? cmd)
(begin

(set! v
(+ v
(incr-velocity-command-dv cmd)))

(publish-velocity))]))

;; report position or velocity to each
;; registered controller:

(define (publish-position)
(let ((msg

(make-position-signal x)))
(for-each
(lambda (c)
(send c receive-signal msg))

controllers)
))

(define (publish-velocity)
(let ((msg (make-velocity-signal v)))

(for-each
(lambda (c)
(send c receive-signal msg))

controllers)))

23

Executes	the	given	
command	and	publishes	
changes	to	the	registered	

controllers.

PositionController.rkt (excerpts)
;; a PositionController% is a
;; (new PositionController% [model Model<%>])

(define PositionController%
(class* object% (Controller<%>)

(init-field model) ; the model

; the position of the center of the
; controller on the canvas
(init-field [x 150] [y 100])

(init-field [width 120][height 50])

(field [half-width (/ width 2)])
(field [half-height (/ height 2)])

;; the position of the particle
(field [particle-x 0])
(field [particle-v 0])

;; ... code for dragging ...

;; ... code for display ...

;; Signal -> Void
;; decodes signal and updates local data
(define/public (receive-signal sig)
(cond
[(position-signal? sig)
(set! particle-x (position-signal-pos sig))]
[(velocity-signal? sig)
(set! particle-v (velocity-signal-v sig))]))

;; KeyEvent -> Void
;; interpret +,- as commands to the model
;; +/- alter position of the particle
(define/public (after-key-event kev)
(if selected?
(cond
[(key=? "+" kev)
(send model execute-command
(make-set-position-command
(+ particle-x 5)))]

[(key=? "-" kev)
(send model execute-command
(make-set-position-command
(- particle-x 5))

)])
2345))

24

Receive	signals	
from	the	model	
and	update	
particle-x or	
particle-v

Receive	key	
events	from	the	
world	and	send	
commands	to	the	

model

VelocityController.rkt
(define VelocityController%
(class* object% (Controller<%>)

(init-field model) ; the model

; the position of the center of the
; controller on the canvas
(init-field [x 150] [y 100])

(init-field [width 120][height 50])

(field [half-width (/ width 2)])
(field [half-height (/ height 2)])

;; the position of the particle
(field [particle-x 0])
(field [particle-v 0])

;; ... code for dragging ...

;; ... code for display ...

;; Signal -> Void
;; decodes signal and updates local data
(define/public (receive-signal sig)
(cond
[(report-position? sig)
(set! particle-x (report-position-pos sig))]
[(report-velocity? sig)
(set! particle-v (report-velocity-v sig))]))

;; KeyEvent -> Void
;; interpret +,- as commands to the model
;; +/- alter velocity of the particle
(define/public (after-key-event kev)
(if selected?
(cond
[(key=? "+" kev)
(send model execute-command
(make-incr-velocity-command 1))]

[(key=? "-" kev)
(send model execute-command
(make-incr-velocity-command -1))])

3456))

25

setup,	signal-
reception	just	the	

same

+	and	– are	interpreted	
differently:	as	

commands	to	change	
the	velocity of	the	

model.

Notice	that	the	
commands	form	a	

rudimentary	
programming	
language.

Lots	of	opportunity	here	for	sharing	
implementation	via	inheritance;	we	

just	haven’t	done	so.

ControllerFactory.rkt
(require "Interfaces.rkt")
(require "VelocityController.rkt")
(require "PositionController.rkt")
(require 2htdp/universe)

(provide ControllerFactory%)

(define ControllerFactory%

(class* object% (SWidget<%>)

; the world in which the controllers will live
(init-field w) ; World<%>

; the model to which the controllers will be connected
(init-field m) ; Model<%>

(super-new)

; KeyEvent -> Void
(define/public (after-key-event kev)
(cond
[(key=? kev "v") (add-viewer VelocityController%)]
[(key=? kev "p") (add-viewer PositionController%)]
))

(define/public (add-viewer viewer-class)
(send w add-widget (new viewer-class [model m])))

(define/public (add-to-scene s) s)

(define/public (after-tick) 122)
(define/public (after-button-down mx my) 123)
(define/public (after-drag mx my) 124)
(define/public (after-button-up mx my) 125)

))

26

The	Controller	Factory	is	an	ordinary	SWidget.
It	takes	keyboard	 input	and	adds	a	new	
controller	to	the	world	in	which	it	lives.

"v"	adds	a	new	VelocityController;	 "p"	adds	a	
new	PositionController.

add-viewer	takes	a	class	as	an	argument;	this	is	
legal	in	Racket	but	not	possible	in	most	OO	
languages.

The	factory	is	invisible,	and	has	no	other	
behaviors– it	responds	 to	all	other	messages	
without	changing	its	state.

require	the	definitions	of	
the	different	controllers

top.rkt
#lang racket

(require "Model.rkt")
(require "World.rkt")
(require "ControllerFactory.rkt")

(define (run rate)
(let* ((m (new Model%))

(w (make-world m 400 300)))
(begin

(send w add-widget
(new ControllerFactory% [m m][w w]))

(send w run rate))))

27

Require	only	the	classes	
that	are	used

Create	a	new	model,	and	a	
world	containing	 that	

model

Add	a	controller	 factory	to	
the	world

Last,	run	the	world

Takeaways	from	this	Lesson
• MVC	is	a	widely-used	architecture
• It	is	a	3-tier	architecture
• It	divides	the	system	up	into	relatively	small,	easy-to-understand	

pieces.
• 3	interfaces:	

– world	->	controllers
– controllers	->	model
– model	->	controllers

• 2	publish/subscribe	relationships	allow	controllers	to	be	created	
dynamically.
– world	publishes	to	controllers
– model	publishes	to	controllers

• Controller	->	Model	interface	is	a	rudimentary	programming	
language

28

Next	Steps

• Study	the	relevant	files	in	the	Examples	folder.
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Problem	Set	#11.

29

